Examples concerning iterated forcing

Piotr Koszmider, piotr.koszmider@gmail.com

Motivation: We will sketch the proof of the relative consistency (assuming the existence of a strongly inaccessible cardinal) of MA + \neg CH + There is no Kurepa tree

• MA = For every c.c.c. partial order P and a family $\mathcal F$ of cardinality $<2^\omega$ of dense subsets of P there is a filter $G\subseteq P$ such that $D\cap G\neq\emptyset$ for all $D\in\mathcal F$

1 Tree = partial order where for each $t \in T$ the set $\{s \in T : s < t\}$ is well ordered

- **1** Tree = partial order where for each $t \in T$ the set $\{s \in T : s < t\}$ is well ordered
- **2** Lev_{α}(T) is the set of such elements that { $s \in T : s < t$ } $\equiv \alpha$

- Tree = partial order where for each $t \in T$ the set $\{s \in T : s < t\}$ is well ordered
- **2** Lev_{α}(T) is the set of such elements that $\{s \in T : s < t\} \equiv \alpha$
- 3 ω_1 -tree = a tree with nonempty countable levels for $\alpha<\omega_1$ and $Lev_{\omega_1}=\emptyset$ i.e., with height ω_1

- **1** Tree = partial order where for each $t \in T$ the set $\{s \in T : s < t\}$ is well ordered
- **2** Lev_{α}(T) is the set of such elements that $\{s \in T : s < t\} \equiv \alpha$
- **3** ω_1 -tree = a tree with nonempty countable levels for $\alpha < \omega_1$ and $Lev_{\omega_1} = \emptyset$ i.e., with height ω_1
- **1** Branch through T = maximal linearly ordered subset of T

<ロ > < 部 > < 注 > < 注 > ・ 注 ・ りへの

- **1** Tree = partial order where for each $t \in T$ the set $\{s \in T : s < t\}$ is well ordered
- **2** Lev_{α}(T) is the set of such elements that { $s \in T : s < t$ } $\equiv \alpha$
- **3** ω_1 -tree = a tree with nonempty countable levels for $\alpha < \omega_1$ and $Lev_{\omega_1} = \emptyset$ i.e., with height ω_1
- Branch through T = maximal linearly ordered subset of T
- **5** Antichain in T = set of pairwise incomparable elements

- **1** Tree = partial order where for each $t \in T$ the set $\{s \in T : s < t\}$ is well ordered
- **2** Lev_{α}(T) is the set of such elements that $\{s \in T : s < t\} \equiv \alpha$
- **3** ω_1 -tree = a tree with nonempty countable levels for $\alpha < \omega_1$ and $Lev_{\omega_1} = \emptyset$ i.e., with height ω_1
- **1** Branch through T = maximal linearly ordered subset of T
- **1** Antichain in T = set of pairwise incomparable elements
- **6** Suslin tree = ω_1 -tree without uncountable antichain and without uncountable branch

|ロ > 4回 > 4 差 > 4 差 > | 差 | 夕 Q ()

- **1** Tree = partial order where for each $t \in T$ the set $\{s \in T : s < t\}$ is well ordered
- **2** Lev_{α}(T) is the set of such elements that { $s \in T : s < t$ } $\equiv \alpha$
- ③ ω_1 -tree = a tree with nonempty countable levels for $\alpha<\omega_1$ and $Lev_{\omega_1}=\emptyset$ i.e., with height ω_1
- **1** Branch through T = maximal linearly ordered subset of T
- **1** Antichain in T = set of pairwise incomparable elements
- Suslin tree = ω_1 -tree without uncountable antichain and without uncountable branch
- **②** Kurepa tree = ω_1 -tree with more than ω_1 uncountable branches

On iterations of forcings

- On iterations of forcings
- On Suslin-free forcings

- On iterations of forcings
- On Suslin-free forcings
- The consistency of MA + ¬CH + There is no Kurepa tree

① Iterations of forcings of length α are sets of sequences of length α

- **1** Iterations of forcings of length α are sets of sequences of length α
- 2 Iterations of forcings P_0 of length 1 are just forcings

- Iterations of forcings of length α are sets of sequences of length α
- ② Iterations of forcings P_0 of length 1 are just forcings
- **3** If P_{α} is an iteration of length α and \dot{Q}_{α} is a P_{α} -name for an atomless partial order, then we define the iteration $P_{\alpha}*\dot{Q}_{\alpha}$ of length $\alpha+1$

- **1** Iterations of forcings of length α are sets of sequences of length α
- 2 Iterations of forcings P_0 of length 1 are just forcings
- ③ If P_{α} is an iteration of length α and \dot{Q}_{α} is a P_{α} -name for an atomless partial order, then we define the iteration $P_{\alpha}*\dot{Q}_{\alpha}$ of length $\alpha+1$

- Iterations of forcings of length α are sets of sequences of length α
- 2 Iterations of forcings P_0 of length 1 are just forcings
- If P_{α} is an iteration of length α and \dot{Q}_{α} is a P_{α} -name for an atomless partial order, then we define the iteration $P_{\alpha}*\dot{Q}_{\alpha}$ of length $\alpha+1$

- Iterations of forcings of length α are sets of sequences of length α
- 2 Iterations of forcings P_0 of length 1 are just forcings
- ③ If P_{α} is an iteration of length α and \dot{Q}_{α} is a P_{α} -name for an atomless partial order, then we define the iteration $P_{\alpha}*\dot{Q}_{\alpha}$ of length $\alpha+1$

- $\textbf{ If } P_{\alpha'} \text{s are iterations of lengths } \alpha' \text{ respectively and } P_{\alpha'} | \alpha'' = P_{\alpha''} \\ \text{ for all } \alpha'' < \alpha' < \alpha \text{ then we define the iteration } P_{\alpha} \text{ of length } \alpha \text{ with supports } < \kappa \text{:}$

$$p \in P_{\alpha}$$
 iff $\forall \alpha' < \alpha$ $p | \alpha' \in P_{\alpha'}$

$$supp(p) = \{\alpha' < \alpha : p(\alpha') \neq 1_{\dot{Q}_{\alpha}}\}$$
 has cardinality $< \kappa$

• We identify P_{β} for $\beta < \alpha$ with a suborder of P_{α} . Also P_{β} -names correspond to some P_{α} -names.

- We identify P_{β} for $\beta < \alpha$ with a suborder of P_{α} . Also P_{β} -names correspond to some P_{α} -names.
- ② For each $\beta < \alpha$ the iteration P_{α} is equivalent to $P_{\beta}^* P_{[\alpha,\beta)}$ where $\dot{P}_{[\alpha,\beta)}$ is an appropriate iteration

- We identify P_{β} for $\beta < \alpha$ with a suborder of P_{α} . Also P_{β} -names correspond to some P_{α} -names.
- ② For each $\beta < \alpha$ the iteration P_{α} is equivalent to $P_{\beta}^* P_{[\alpha,\beta)}$ where $\dot{P}_{[\alpha,\beta)}$ is an appropriate iteration
- **3** If *D* is dense in P_{β} then P_{α} forces that

$$\dot{\mathbf{G}}|\beta = \{\mathbf{p}|\beta : \mathbf{p} \in \dot{\mathbf{G}}\} \cap \check{\mathbf{D}} \neq \emptyset$$

- We identify P_{β} for $\beta < \alpha$ with a suborder of P_{α} . Also P_{β} -names correspond to some P_{α} -names.
- ② For each $\beta < \alpha$ the iteration P_{α} is equivalent to $P_{\beta}^* P_{[\alpha,\beta)}$ where $\dot{P}_{[\alpha,\beta)}$ is an appropriate iteration
- **3** If *D* is dense in P_{β} then P_{α} forces that

$$\dot{\mathbf{G}}|\beta = \{\mathbf{p}|\beta : \mathbf{p} \in \dot{\mathbf{G}}\} \cap \check{\mathbf{D}} \neq \emptyset$$

• If \dot{D} is a P_{β} -name for a dense subset of \dot{Q}_{β} , then P_{α} forces that

$$\dot{G}(\beta) = \{ p(\beta) : p \in \dot{G} \} \cap \dot{D} \neq \emptyset$$

• If $P_{\beta} \parallel \dot{Q}_{\beta}$ is c.c.c for each $\beta < \alpha$, and P_{α} is an iteration with finite support, then P_{α} is c.c.c.

- If $P_{\beta} \parallel \dot{Q}_{\beta}$ is c.c.c for each $\beta < \alpha$, and P_{α} is an iteration with finite support, then P_{α} is c.c.c.
- ② But there could be P_1 , Q_1 both c.c.c. such that $P_1^*\check{Q}_1$ is not c.c.c. (because $P_1 \not\Vdash \check{Q}_1$ is c.c.c.)

- If $P_{\beta} \parallel \dot{Q}_{\beta}$ is c.c.c for each $\beta < \alpha$, and P_{α} is an iteration with finite support, then P_{α} is c.c.c.
- ② But there could be P_1 , Q_1 both c.c.c. such that $P_1^*\check{Q}_1$ is not c.c.c. (because $P_1 \not\models \check{Q}_1$ is c.c.c.)
- **1** If P is reversed Suslin tree then P is c.c.c. but $P^*\check{P}$ is not c.c.c. because $P \times P \subseteq P^*\check{P}$ is not c.c.c.

• In general if \dot{x} is a P_{α} -name for α a limit ordinal of (large) cofinality there may not be $\beta < \alpha$ and a P_{β} -name \dot{y} such that $P_{\alpha} \parallel -\dot{x} = \dot{y}$

- In general if \dot{x} is a P_{α} -name for α a limit ordinal of (large) cofinality there may not be $\beta < \alpha$ and a P_{β} -name \dot{y} such that $P_{\alpha} \parallel -\dot{x} = \dot{y}$
- **2** Let κ be a cardinal. Let P_{α} be an iteration with finite supports of c.c.c. forcings where $\kappa < cf(\alpha)$ is uncountable. If $P_{\alpha} \parallel -\dot{x} \subseteq \check{\kappa}$. Then there is $\beta < \alpha$ and a P_{β} -name \dot{y} such that $P_{\alpha} \parallel -\dot{x} = \dot{y}$

Let κ be a cardinal. Let P_{α} be an iteration with finite supports of c.c.c. forcings where $\kappa < \operatorname{cf}(\alpha)$ is uncountable. If $P_{\alpha} \parallel -\dot{x} \subseteq \check{\kappa}$. Then there is $\beta < \alpha$ and a P_{β} -name \dot{y} such that $P_{\alpha} \parallel -\dot{x} = \dot{y}$

Let κ be a cardinal. Let P_{α} be an iteration with finite supports of c.c.c. forcings where $\kappa < cf(\alpha)$ is uncountable. If $P_{\alpha} \parallel -\dot{x} \subseteq \check{\kappa}$. Then there is $\beta < \alpha$ and a P_{β} -name \dot{y} such that $P_{\alpha} \parallel -\dot{x} = \dot{y}$

Proof.

Let κ be a cardinal. Let P_{α} be an iteration with finite supports of c.c.c. forcings where $\kappa < cf(\alpha)$ is uncountable. If $P_{\alpha} \parallel -\dot{x} \subseteq \check{\kappa}$. Then there is $\beta < \alpha$ and a P_{β} -name \dot{y} such that $P_{\alpha} \parallel -\dot{x} = \dot{y}$

Proof.

1 If $A \subseteq P_{\alpha}$ is an antichain, then $\bigcup \{supp(p) : p \in A\}$ is bounded in α .

_

10 / 14

Let κ be a cardinal. Let P_{α} be an iteration with finite supports of c.c.c. forcings where $\kappa < cf(\alpha)$ is uncountable. If $P_{\alpha} \parallel -\dot{x} \subseteq \check{\kappa}$. Then there is $\beta < \alpha$ and a P_{β} -name \dot{y} such that $P_{\alpha} \parallel -\dot{x} = \dot{y}$

Proof.

- If $A \subseteq P_{\alpha}$ is an antichain, then $\bigcup \{supp(p) : p \in A\}$ is bounded in α .
- **②** For every $\xi < \kappa$ define a maximal antichain A_{ξ} among conditions of P_{α} which force $\check{\xi} \in \dot{x}$

Let κ be a cardinal. Let P_{α} be an iteration with finite supports of c.c.c. forcings where $\kappa < cf(\alpha)$ is uncountable. If $P_{\alpha} \parallel -\dot{x} \subseteq \check{\kappa}$. Then there is $\beta < \alpha$ and a P_{β} -name \dot{y} such that $P_{\alpha} \parallel -\dot{x} = \dot{y}$

Proof.

- If $A \subseteq P_{\alpha}$ is an antichain, then $\bigcup \{supp(p) : p \in A\}$ is bounded in α .
- ② For every $\xi < \kappa$ define a maximal antichain A_{ξ} among conditions of P_{α} which force $\check{\xi} \in \dot{x}$
- **3** Define $\dot{y} = \bigcup_{\xi \in \kappa} \{ \check{\xi} \} \times A_{\xi}$

10 / 14

(GCH) There is a finite support iteration P_{κ} of length ω_2 of c.c.c. forcings such that $P_{\omega_2} \parallel MA + 2^{\omega} = \omega_2$

(GCH) There is a finite support iteration P_{κ} of length ω_2 of c.c.c. forcings such that $P_{\omega_2} \parallel MA + 2^{\omega} = \omega_2$

Proof.

11/14

(GCH) There is a finite support iteration P_{κ} of length ω_2 of c.c.c. forcings such that $P_{\omega_2} \parallel MA + 2^{\omega} = \omega_2$

Proof.

Do the right book-keeping so that

Piotr Koszmider () Iterated forcing Hejnice, 09 11 / 14

(GCH) There is a finite support iteration P_{κ} of length ω_2 of c.c.c. forcings such that $P_{\omega_2} \parallel MA + 2^{\omega} = \omega_2$

Proof.

Do the right book-keeping so that whenever $P_{\omega_2} \Vdash |\dot{P}| \leq \omega_1$ and $P_{\omega_2} \Vdash \dot{P}$ is c.c.c., and $\{\dot{D}_\xi : \xi < \omega_1\}$ are P_{ω_2} -names for dense sets of \dot{P} then there is $\beta < \omega_2$ such that $P_\beta \Vdash \dot{P} = \dot{Q}_\beta$ and there are P_β -names $\{\dot{E}_\xi : \xi < \omega_1\}$ such that $P_\beta \Vdash \dot{E}_\xi = \dot{D}_\xi$ for $\xi < \omega_1$

Piotr Koszmider () Iterated forcing Hejnice, 09 11 / 14

(GCH) There is a finite support iteration P_{κ} of length ω_2 of c.c.c. forcings such that $P_{\omega_2} \parallel MA + 2^{\omega} = \omega_2$

Proof.

Do the right book-keeping so that whenever $P_{\omega_2} \parallel \vdash \mid P \mid \leq \omega_1$ and $P_{\omega_2} \parallel \vdash \mid \dot{P} \mid$ is c.c.c., and $\{\dot{D}_{\xi} : \xi < \omega_1\}$ are P_{ω_2} -names for dense sets of \dot{P} then there is $\beta < \omega_2$ such that $P_{\beta} \parallel \vdash \dot{P} = \dot{Q}_{\beta}$ and there are P_{β} -names $\{\dot{E}_{\xi} : \xi < \omega_1\}$ such that $P_{\beta} \parallel \vdash \dot{E}_{\xi} = \dot{D}_{\xi}$ for $\xi < \omega_1$ Then P_{β} forces that \dot{Q}_{β} forces that

$$\dot{G}(\beta) = \{ p(\beta) : p \in \dot{G} \}$$

is a filter in $\dot{P}=\dot{Q}_{\beta}$ meeting all $\dot{E}_{\xi}=\dot{D}_{\xi}.$

◆ロ > ←回 > ← 三 > ← 三 > 一 三 * り < ○</p>

Piotr Koszmider () Iterated forcing Hejnice, 09 11 / 14

(GCH) There is a finite support iteration P_{κ} of length ω_2 of c.c.c. forcings such that $P_{\omega_2} \parallel MA + 2^{\omega} = \omega_2$

Proof.

Do the right book-keeping so that whenever $P_{\omega_2} \Vdash |\dot{P}| \leq \omega_1$ and $P_{\omega_2} \Vdash \dot{P}$ is c.c.c., and $\{\dot{D}_\xi : \xi < \omega_1\}$ are P_{ω_2} -names for dense sets of \dot{P} then there is $\beta < \omega_2$ such that $P_\beta \Vdash \dot{P} = \dot{Q}_\beta$ and there are P_β -names $\{\dot{E}_\xi : \xi < \omega_1\}$ such that $P_\beta \Vdash \dot{E}_\xi = \dot{D}_\xi$ for $\xi < \omega_1$ Then P_β forces that \dot{Q}_β forces that

$$\dot{G}(\beta) = \{ p(\beta) : p \in \dot{G} \}$$

is a filter in $\dot{P} = \dot{Q}_{\beta}$ meeting all $\dot{E}_{\xi} = \dot{D}_{\xi}$. This is preserved from P_{β} to P_{ω_2} because P_{ω_2} is equivalent to $P_{\beta}^* P_{[\beta,\omega_2)}$

Motivation: We will sketch the proof of the relative consistency (assuming the existence of a strongly inaccessible cardinal) of MA + \neg CH + There is no Kurepa tree

Preparatory stage

Preparatory stage

First (using an inaccessible cardinal) obtain the consistency of CH
 + There is no Kurepa tree

Preparatory stage

- First (using an inaccessible cardinal) obtain the consistency of CH
 + There is no Kurepa tree
- **2** And moreover for any c.c.c. forcing P of cardinality $\omega_1 P \Vdash$ There is no Kurepa tree.

Preparatory stage

- First (using an inaccessible cardinal) obtain the consistency of CH
 + There is no Kurepa tree
- **2** And moreover for any c.c.c. forcing P of cardinality ω_1 $P \Vdash$ There is no Kurepa tree.
- $\ \ \,$ Assume: no c.c.c. forcing P of cardinality $\omega_{\rm 1}$ forces that there is Kurepa tree

13 / 14

Piotr Koszmider () Iterated forcing Hejnice, 09

Main stage

Main stage

• Iterate all c.c.c forcings of cardinality ω_1 which do not add uncountable branches through an ω_1 -trees

Main stage

- Iterate all c.c.c forcings of cardinality ω_1 which do not add uncountable branches through an ω_1 -trees
- **2** Prove that if P is c.c.c. and adds an uncountable branch through an ω_1 -tree, then there is Q which is c.c.c., does not add uncountable branches through ω_1 -trees and

 $Q \Vdash \check{P}$ is not c.c.c.

Main stage

- Iterate all c.c.c forcings of cardinality ω_1 which do not add uncountable branches through an ω_1 -trees
- 2 Prove that if P is c.c.c. and adds an uncountable branch through an ω_1 -tree, then there is Q which is c.c.c., does not add uncountable branches through ω_1 -trees and

$$Q \Vdash \check{P}$$
 is not c.c.c.

3 Prove that if for each $\beta < \alpha$ we have $P_{\beta} \Vdash \dot{Q}_{\beta}$ does not add an uncountable branches through ω_1 -trees, then P_{α} has this property as well as for each $\beta < \alpha$ we have that P_{β} forces that $P_{[\beta,\alpha)}$ has this property.