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Motivation: We will sketch the proof of the relative consistency
(assuming the existence of a strongly inaccessible cardinal) of MA +
¬CH + There is no Kurepa tree
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1 MA = For every c.c.c. partial order P and a family F of cardinality
< 2ω of dense subsets of P there is a filter G ⊆ P such that
D ∩G 6= ∅ for all D ∈ F
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1 Tree = partial order where for each t ∈ T the set {s ∈ T : s < t} is
well ordered

2 Levα(T ) is the set of such elements that {s ∈ T : s < t} ≡ α
3 ω1-tree = a tree with nonempty countable levels for α < ω1 and

Levω1 = ∅ i.e., with height ω1

4 Branch through T = maximal linearly ordered subset of T
5 Antichain in T = set of pairwise incomparable elements
6 Suslin tree = ω1-tree without uncountable antichain and without

uncountable branch
7 Kurepa tree = ω1-tree with more than ω1 uncountable branches
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Outline

1 On iterations of forcings
2 On Suslin-free forcings
3 The consistency of MA + ¬CH + There is no Kurepa tree
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1 Iterations of forcings of length α are sets of sequences of length α

2 Iterations of forcings P0 of length 1 are just forcings
3 If Pα is an iteration of length α and Q̇α is a Pα-name for an

atomless partial order, then we define the iteration Pα ∗ Q̇α of
length α + 1

4 p_q̇ ∈ Pα ∗ Q̇α iff p ∈ Pα and p ‖−q̇ ∈ Q̇α

5 p_q̇ ≤ p′_q̇′ iff p ≤Pα
p′ and p ‖−q̇ ≤Q̇α

q̇′

6 If Pα′s are iterations of lengths α′ respectively and Pα′ |α′′ = Pα′′

for all α′′ < α′ < α then we define the iteration Pα of length α with
supports < κ:

p ∈ Pα iff ∀α′ < α p|α′ ∈ Pα′

supp(p) = {α′ < α : p(α′) 6= 1Q̇α
} has cardinality < κ
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Observations A:
1 We identify Pβ for β < α with a suborder of Pα. Also Pβ-names

correspond to some Pα-names.

2 For each β < α the iteration Pα is equivalent to Pβ∗P[α,β) where
Ṗ[α,β) is an appropriate iteration

3 If D is dense in Pβ then Pα forces that

Ġ|β = {p|β : p ∈ Ġ} ∩ Ď 6= ∅

4 If Ḋ is a Pβ-name for a dense subset of Q̇β, then Pα forces that

Ġ(β) = {p(β) : p ∈ Ġ} ∩ Ḋ 6= ∅
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Observations B:
1 If Pβ ‖−Q̇β is c.c.c for each β < α, and Pα is an iteration with finite

support, then Pα is c.c.c.

2 But there could be P1,Q1 both c.c.c. such that P1
∗Q̌1 is not c.c.c.

(because P1 6‖−Q̌1 is c.c.c.)
3 If P is reversed Suslin tree then P is c.c.c. but P∗P̌ is not c.c.c.

because P × P ⊆ P∗P̌ is not c.c.c.
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Observations C:
1 In general if ẋ is a Pα-name for α a limit ordinal of (large) cofinality

there may not be β < α and a Pβ-name ẏ such that Pα ‖−ẋ = ẏ

2 Let κ be a cardinal. Let Pα be an iteration with finite supports of
c.c.c. forcings where κ < cf (α) is uncountable. If Pα ‖−ẋ ⊆ κ̌.
Then there is β < α and a Pβ-name ẏ such that Pα ‖−ẋ = ẏ
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2 Let κ be a cardinal. Let Pα be an iteration with finite supports of

c.c.c. forcings where κ < cf (α) is uncountable. If Pα ‖−ẋ ⊆ κ̌.
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Theorem
Let κ be a cardinal. Let Pα be an iteration with finite supports of c.c.c.
forcings where κ < cf (α) is uncountable. If Pα ‖−ẋ ⊆ κ̌. Then there is
β < α and a Pβ-name ẏ such that Pα ‖−ẋ = ẏ

Proof.

1 If A ⊆ Pα is an antichain, then
⋃
{supp(p) : p ∈ A} is bounded in

α.
2 For every ξ < κ define a maximal antichain Aξ among conditions

of Pα which force ξ̌ ∈ ẋ
3 Define ẏ =

⋃
ξ∈κ{ξ̌} × Aξ
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Proof.
1 If A ⊆ Pα is an antichain, then

⋃
{supp(p) : p ∈ A} is bounded in

α.
2 For every ξ < κ define a maximal antichain Aξ among conditions

of Pα which force ξ̌ ∈ ẋ
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Theorem
(GCH) There is a finite support iteration Pκ of length ω2 of c.c.c.
forcings such that Pω2 ‖− MA + 2ω = ω2

Proof.
Do the right book-keeping so that whenever Pω2 ‖−|Ṗ| ≤ ω1 and
Pω2 ‖−Ṗ is c.c.c., and {Ḋξ : ξ < ω1} are Pω2-names for dense sets of Ṗ
then there is β < ω2 such that Pβ ‖−Ṗ = Q̇β and there are Pβ-names
{Ėξ : ξ < ω1} such that Pβ ‖−Ėξ = Ḋξ for ξ < ω1

Then Pβ forces that Q̇β forces that

Ġ(β) = {p(β) : p ∈ Ġ}

is a filter in Ṗ = Q̇β meeting all Ėξ = Ḋξ. This is preserved from Pβ to
Pω2 because Pω2 is equivalent to Pβ∗P[β,ω2)
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Ġ(β) = {p(β) : p ∈ Ġ}
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Motivation: We will sketch the proof of the relative consistency
(assuming the existence of a strongly inaccessible cardinal) of MA +
¬CH + There is no Kurepa tree
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Proof.
Preparatory stage

1 First (using an inaccessible cardinal) obtain the consistency of CH
+ There is no Kurepa tree

2 And moreover for any c.c.c. forcing P of cardinality ω1 P ‖− There
is no Kurepa tree.

3 Assume: no c.c.c. forcing P of cardinality ω1 forces that there is
Kurepa tree
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Proof.
Main stage

1 Iterate all c.c.c forcings of cardinality ω1 which do not add
uncountable branches through an ω1-trees

2 Prove that if P is c.c.c. and adds an uncountable branch through
an ω1-tree, then there is Q which is c.c.c., does not add
uncountable branches through ω1-trees and

Q ‖−P̌ is not c.c.c.

3 Prove that if for each β < α we have Pβ ‖−Q̇β does not add an
uncountable branches through ω1-trees, then Pα has this property
as well as for each β < α we have that Pβ forces that P[β,α) has
this property.
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